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Abstract

Unsteady aerodynamic effects, like dynamic stall, must be considered in
calculation of dynamic forces for wind turbines. Models incorporated in
aero-elastic programs are of semi-empirical nature. Resulting
aerodynamic forces therefore depend on values used for the semi-
empirical parameters. In this report a study of finding appropriate
parameters to use with the FFA- Beddoes-Leishman dynamic stall model
is discussed. Minimization of the deviation between results from 2D
wind tunnel tests and simulation with the model is used to find optimum
values for the parameters.

The optimization program MMA, Method of Moving Asymptotes is used
to optimize parameters in the model for nonlinear aerodynamics.

The optimization program MMA has been modified to work for
problems with a quadratic object function without constraints.

The resulting optimum parameters show a large variation from case to
case. Using these different sets of optimum parameters in the calculation
of blade vibrations give rise to quite different predictions of aerodynamic
damping.



FFA TN 1999-37

4



FFA TN 1999-37

5

Table of Contents

� ,QWURGXFWLRQ ��������������������������������������������������������������������������
��� %DFNJURXQG������������������������������������������������������������������

� 7KH�'\QDPLF�6WDOO�0RGHO ����������������������������������������������������
��� 7KH�3KHQRPHQRQ�RI�'\QDPLF�6WDOO ���������������������������
��� 7KH�))$�'\QDPLF�6WDOO�0RGHO������������������������������������

� 7KH�2SWLPL]DWLRQ�3URJUDP��������������������������������������������������
��� 7KH�RSWLPL]DWLRQ�SUREOHP ������������������������������������������
��� 'HVFULSWLRQ�RI�00$��WKH�0HWKRG�RI�0RYLQJ

$V\PSWRWHV �����������������������������������������������������������������
��� 0RGLILFDWLRQV�RI�00$�������������������������������������������������
��� 6WUXFWXUH�RI�WKH�RSWLPL]DWLRQ�SURJUDP����������������������
��� +RZ�WR�XVH�WKH�RSWLPL]DWLRQ�SURJUDP�����������������������

� 2SWLPL]DWLRQ�������������������������������������������������������������������������
��� &DVHV�RI�RSWLPL]DWLRQ�DQG�W\SH�RI�REMHFWLYH

IXQFWLRQ������������������������������������������������������������������������
��� (IIHFW�RI�VPDOO�HUURUV�LQ�ZLQG�WXQQHO

PHDVXUHPHQWV�������������������������������������������������������������
��� 2SWLPL]DWLRQ�5HVXOWV ��������������������������������������������������

����� 5HVXOWV�IURP�&)'�������������������������������������������
��� 6KRUWFRPLQJ�RI�WKH�G\QDPLF�VWDOO�PRGHO ������������������
��� 7KH�5RRW�0HDQ�6TXDUH�IXQFWLRQ�DQG

&RPSDULVRQ�EHWZHHQ�GLIIHUHQW�FDVHV� ����������������������
��� 7I�DV�D�IXQFWLRQ�RI�WKH�VHSDUDWLRQ�SRLQW ��������������������

� &RQFOXVLRQV�������������������������������������������������������������������������

$FQRZOHGJHPHQWV �����������������������������������������������������������������������

5HIHUHQFHV �����������������������������������������������������������������������������������

$SSHQGL[ ��������������������������������������������������������������������������������������



FFA TN 1999-37

6



FFA TN 1999-37

7

Nomenclature

FG
D A constant in the VHSG& ,  equation.

F Chord length, [m]

G
& Drag force coefficient.

O
& Lift force coefficient.

αO& α∂
∂

O
&

, [rad-1].

maxO
& Maximum value of 

O
& .

IO& , The lift force coefficient being a function of the

separation point I.

VWHDG\O& , Static lift force coefficient.

YO
& , The vortex lift force coefficient.

Q
& Normal force coefficient.

[
& Tangential force coefficient, positive towards the

leding edge, i.e in the opposite x-direction.

FY Increment in vortex lift.

I Distance from the leading edge to point of separation
divided by F. Also interpolating function.

K Distance perpendicular to the chord.

N Reduced frequency, 
9
F

⋅
⋅

2

ω

V Non-dimensional time, 
F
W9 ⋅⋅2

.

W Time,[s].

7I Non-dimensional time constant.

7S Non-dimensional time constant.

7Y Non-dimensional time constant.
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9 Free stream wind speed, [m/s].

[ Chord wise distance from the leading edge, [m].

α Angle of attack, [deg]

0α Angle of attack at 
O

& =0.

Iα A substitute value for the effective angle of attack.

η Weight coefficient in the objective function.

ω Rotational frequency, [rad/s].

Subscripts
H[S Data for wind tunnel measurement or Navier-Stokes

calculation.

VLP Model simulation.

L Component i of a quantity.

M Component j of a quantity.
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1 Introduction

1.1 Background
A majority of today’s working wind turbines use stall regulation for
passive control of maximum power and loads. Operation with the blades
partially in stall is part of their normal operation and the calculation of
loads in the stall region is crucial for the design of stall regulated wind
turbines.

Engineering models consist of a mixture of physical aspects transformed
into equations containing parameters of initially unknown size. It is
important for these models to have data from measurements available
such that good numerical values can be selected for these parameters.
These initially unknown parameters are often referred to as “ tuning
parameters “. The usefulness of the semi-empirical models is, however,
dependent on that physical mechanisms of dynamic stall are correctly
enough described and that proper values for semi-empirical constants can
be found.

In this report the optimization program MMA, is used to optimize some
tuning parameters in the FFA-Beddoes-Leishman dynamic stall model.
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2 The Dynamic Stall Model

2.1 The Phenomenon of Dynamic Stall
The term “ dynamic stall ” is most often used to describe the complex
series of events that result in dynamic delay of stall to higher angles of
attack than the static stall angle. This will e.g. lead to lift coefficients
exceeding the static maxO

& . The attendant aerodynamic forces and

moments exhibit large amounts of hysteresis with respect to the
instantaneous angle of attack.

Even though, in the past, most attention has been given to dynamic stall
on helicopter blades, the phenomenon also occurs on jet engine
compressor blades, rapidly maneuvering aircraft and wind turbine blades.

Fig 2.1 [1] shows the development of &Q and &P versus angle of attack α
and the corresponding boundary layer behavior for a dynamically stalling
airfoil. The information is for a NACA 0012 airfoil oscillated in pitch,
but the development of stall is - except for some differences for thick
airfoils and small amplitudes - similar in almost all airfoils experiencing
fully developed dynamic stall.

Two main characteristics of dynamic stall are the delay in the separation
process and the vortex-shedding process. At point (a) in Fig 2.1 there is
not any noticeable change in the flow around the pitching airfoil passing
the static-stall angle. The first indication of disturbance in the viscous
flow is seen to be appearing at point (b), when the flow reverses near the
surface at the rear of the airfoil. This reversal progresses up the airfoil
surface; then at an angle that depends on many parameters, including
airfoil shape, pitch rate, frequency, Reynolds number and Mach number
as well as three-dimensional effects, the viscous flow no longer remains
thin and attached, and a very strong vortical flow develops. This vortex
begins near the leading edge of the airfoil point (e) in Fig 2.1, enlarges,
and then moves down the airfoil, inducing strong pitching-moment
effects on the airfoil (points (f) and (i)), producing the phenomenon
known as dynamic stall. As the angle of attack decreases, the vortex
moves into the wake, and a fully separated flow develops on the airfoil. It
is worth noting that the angle of attack in Fig 2.1 has reached its
minimum before lift is reestablished on the airfoil.
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Figure 2.1 Events of dynamic stall on a NACA 0012 airfoil [1].

There are several situations where rapid enough changes of the angle of
attack for dynamic stall to be important occur on wind turbine blades.
Dynamic stall can be important at angle of attack changes occurring at a
rate as low as one per rotor revolution. During nominal field operations,
the aerodynamic conditions that produce dynamic stall cannot be
prevented. Unsteady turbine inlet velocity profiles are driven naturally by
variations in the wind magnitude and direction. Also, inlet flows are
altered by obstructions such as tower shadow effects or through flow
perturbations introduced by other machines operating upwind on large
wind farms.

The resulting transient forces have substantial impacts on operating
turbines. Reduced machine life due to fatigue, increased maintenance,
and severe transient power spiking are all typical effects. In a rapidly
changing unsteady aerodynamic environment unsteady loads can be four
to five times larger than predicted steady state values, [2].
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Dynamic stall influences the loading of wind turbine rotors in several
different ways. Compared to quasi-steady conditions, dynamic “over
shoots“ in the aerodynamic forces will lead to larger loads. It is also
important that for blade oscillations, the phase of the forces will be
different from those, which would have been generated by quasi-steady
motion. For many cases in stall, the blade oscillations would be unstable
if quasi-steady forces would prevail. However, due to the unsteady
dynamic stall response, the phase of the aerodynamic forces will be
different during an oscillation cycle and the cycle damping can become
positive, that is the air extracts energy from the rotor during each cycle of
oscillation. It is important to be able to catch this in aeroelastic
calculations, through a proper modeling of dynamic stall.

2.2 The FFA Dynamic Stall Model
The FFA dynamic stall model is an implementation of the Beddoes-
Leishman model, see e.g. [3]. The Beddoes-Leishman model, which is
semi-empirical, can shortly be described as an indicial response model
for attached flow extended with models for separated flow effects and
vortex lift. The model requires only steady two-dimensional data - static
&O�α � and &G�α � � as input for the specific airfoil for which the
dynamic forces will be calculated.

The attached flow response to a general angle of attack history is
calculated from the superposition of individual indicial responses for
each step. This attached flow response is then modified based upon the
unsteady separation point. The separation point is given by I� �[�F, where
[ is the point of flow separation measured from the leading edge, and F is
the airfoil chord length, see figure 2.2.

Figure 2.2. Traveling of separation point I� �[�F along the airfoil surface.
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One approximation relating the lift force to the separation point is the
Kirchoff flow model, given as

2

0, 2

1
)()( 









 +
⋅−⋅=

I
&I& OIO ααα                                                     (2.1)

αO&  is the lift force curve slope and 0α  is the zero-lift angle of attack.
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Figure 2.3. )(α
O

&  and )(αI  curves.

In figure 2.3 an example of )(αI  and static )(α
O

&  curves are seen.

)(αI  varies between 1, for fully attached flow, and 0, for totally

separated flow, this can also be seen in figure 2.2.

There is a lag in the pressure response along the airfoil for unsteady
motion. E.g. the leading edge pressure, which influences the development
of the boundary layer and hence the point of separation, will lag its quasi-
static value. In the Beddoes-Leishman model this effect is modeled by a
shift in angle of attack. The shifted α  represents the quasi-static α for
which the same peak pressure is attained. This α is used to generate the
separation point I� To obtain the shifted α , a first order lag, with a time
constant 7S� is applied to SRWO& ,  in order to produce a substitute value

’
, SRWO& .
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7S

&&

GV

G& SRWOSRWOSRWO

’
,,

’
, −

=  (2.2)

where V is the non-dimensional time, F
W9V ⋅⋅= 2 .

’
, SRWO&  is then used to define a substitute value for the shifted angle of

attack as

0

’
, αα
α

+=
O

SRWO

I &

&
(2.3)

This 
I

α is used to obtain an effective value for the separation point IVWDWLF.

SRWO& ,  is derived from unsteady potential flow theory: The indicial

method is used to obtain the unsteady circulatory and non- circulatory
lift. The circulatory lift is the lift affected by the influence of the shed
wake. This is made in the “attached flow” part of the calculation. SRWO& ,  is

a sum of circulatory and non- circulatory lift:

QRQFOFOSRWO &&& ,,, +=

A great portion of the dynamic effect on lift is obtained by the time lag in
the movement of the separation point. The separation points tends to its
static value, but lags according to a first order filter with a time constant
7I�

7I

II

GV
GI

VWDWLF
−

= (2.4)

A vortex lift contribution is also added when the conditions for vortex
generation and vortex travel are present. The contribution of vortex lift is
a function of the difference between the “attached flow” value of
circulatory lift and the lift obtained through the Kirchoff flow model. The
vortex lift is computed by assuming that the vortex lift contribution can
be viewed as an excess circulation, which is not shed into the wake until
some critical condition is reached. Empirically derived time constants are
associated with the growth and decay of the vortex lift. The accumulated
vortex lift decays exponentially with time but is also updated with new
incremental contribution. The time constant for vortex decay, 7Y, is one
of the semi-empirical parameters in the model. The vortex lift is
represented by the following equations:
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(2.6)                                                                                  

(2.5)                                                                                        

,
,

.,

7Y

&
GV
GF

GV

G&

&&F

YO
Y

YO

IOFOY

−
=

−=

FO
& ,  is the circulatory lift force coefficient.

In the currently used model, no criterion for the start of ” vortex
travelling ” is used, and vortex contribution is allowed as long as the
angle of attack is increasing. This fact will give less good simulation
results for thin airfoils, were vortex shedding has a great importance.

The vortex lift is assumed to act only in the airfoil normal direction. In
order to get zero tangential force contribution a “vortex drag” component
is therefore added. The drag is obtained as the static drag plus
components of induced drag due to shed wake effects, vortex drag and
separation drag, &G�VHS

)( ,,, IOVWDWLFOFGVHSG &&D& −= (2.7)

&G�VHS is a model of the drag being larger than its static value if the
separation point is upstream of its static value and vice versa.

A more detailed description of the FFA-implementation of the Beddoes-
Leishman dynamic stall model can be found in [4].
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3 The Optimization Program

In this chapter the choice of optimization method and structure of the
optimization program is described. A description of how to use the
program can be found in Appendix 1.

3.1 The optimization problem
To begin, we need an objective function, unknown variables and
constraints, if there are any, to define the optimization problem.

2EMHFWLYH�IXQFWLRQ
In fitting experimental data to a user-defined model, we might minimize
the total deviation of observed data from predictions based on the model.

The definition of a relevant objective function is by no means obvious. A
good agreement between experiments and simulations could be good
agreement in maximum lift. Another objective function that considers the
agreement in “mean lift curve slope”, which is very important for
aerodynamic damping as pointed out in e.g. [5], is imaginable.

In the current study objective functions based on minimizing the
deviation between experiments and simulations have been used.

Objective function 1:

( ) ( )( )[ ]   
1

2
exp,,1 ∑

=

−=
N

L

LOLVLPO
W&W&I η (3.1)

Objective function 2:

( ) ( )( )[ ] ( ) ( ) ( )( )[ ]∑∑
==

−+−=
N

L

LWLVLPW

N

L

LQLVLPQ
W&W&W&W&I

1

2
exp,,

1

2
exp,,2 -1  ηη (3.2)

8QNQRZQ�YDULDEOHV
In fitting-the-data problem, the unknowns are the parameters that define
the dynamic stall model.

The resulting lift and drag for unsteady cases will depend on the semi-
empirical parameters 7I��7Y��DFG�DQG�7S�
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2SWLPL]DWLRQ�SUREOHP
Find values of the variables that minimize the objective function.

3.2 Description of MMA, the Method of
Moving Asymptotes

The Method of Moving Asymptotes [9] is a robust optimization program
developed by Krister Svanberg at the Royal Institute of Technology in
Stockholm. It has been implemented in several large systems for
structural optimization, e.g. in OPTSYS at the Aircraft division of Saab-
Scania, and in OASIS at ALFGAM Optimization AB.

MMA is an iterative convex approximation method. In each iteration, a
convex subproblem, which approximates the original problem, is
generated and solved. An important role in the generation of these
subproblems is played by a set of parameters which influence the
“curvature” of the approximations, and also act as “asymptotes“ for the
subproblem. By moving these asymptotes, between each iteration, the
convergence of the overall process can be stabilized.

The subproblems generated by MMA are then solved by so called dual
methods.

Consider an optimization problem of the following general form:

( ) ( )

( )

QM[[[

PLII

I

MM

LL

Q

,...,1for                                 and                 

,...,1for                              subject to                  

                                      minimize               :P

maxmin

0

=≤≤

=≤

ℜ∈

∧
[

�[[

where ( )  ,...,1
7

Q
[[=[  is the vector of design variables, in our case 7Y�

7I�� DFG� DQG� 7S. ( )[0I  is the objective function, the total deviation of

observed data from predictions based on the model. ( )
∧

≤
LL
II [  are

constraints. 
minM

[  and 
maxM

[  are the lower and upper bounds on the design

variables.
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A well-established general approach for attacking such a problem is to
generate and solve a sequence of subproblems according to the following
iterative scheme:

Step 0.   Let index k=0 and choose a starting point ( )0[ .

Step I.    Given an iteration point ( )N[ , calculate ( )( )k[
L
I  and the

gradients ( )( )N

L
I [∇  for L 0,…,P.

Step II.  Generate a subproblem by replacing the (usually implicit)

functions 
L
I  by approximating explicit functions ( )N

L
I , based on the

calculations in step I.

Step III.  Solve the subproblem and let this optimal solution be the next
iteration point ( )1+N[ . Set k=k+1 and go to step I

The process is terminated when some convergence criteria are fulfilled,
or simply when the user is satisfied with the current solution ( )N[ .

In MMA, each approximating function ( )NI  is obtained by a linearization

of I  in variables of the type ( )
MM
[8 − 1  or ( )

MM
/[ − 1 , where 

M
/ and

M
8  are parameters that satisfy ( )

M

N

MM 8[/ <<  and they are given finite

values in each iteration step, which stabilizes the process. 
M

/  and 
M

8  are

called moving asymptotes.

The approximating functions then looks as follows (for L 1,…,P)

( )
L

Q

M MM

LM

MM

LMN

L U
/[

T

[8

S
I +













−
−

−
= ∑

=1

(3.3)

where 
LLMLM
UTS  and  ,  are constants based on the calculations in step I and

they are updated in every iteration step. This gives the following
subproblem:

( )

{ } { } QM[[[

PLIU
/[

T

[8

S

U
/[

T

[8

S
3

MMMMM

LL

MM

LM

MM

LM

Q

M MM

M

MM

MN

,...,1for        ,min,max                  and              

,...,1for                   subject to              

            minimize      :

maxmin

n

1j

0
1

00

=≤≤

=≤+












−
−

−

+












−
−

−

∧

=

=

∑

∑

βα

The parameters 
M

α  and 
M

β  are “move limits” and should be chosen such

that



FFA TN 1999-37

20

                              
MMMMM

8[/ ≤≤≤≤ βα (3.4)

Equation (3.3) is written shortly as ;[∈ .

The subproblem above is a convex optimization problem, which means
that any local optimum to the subproblem is also a global optimum.

A nice property of the convex subproblem is that it can be transformed to
an equivalent problem, called the “ dual ” problem.

The Lagrange function corresponding to ( )N3  is given by:

     ( ) ( ) ( )
   

1 1
∑ ∑

= =

∧













−
−

−
+





 −−=

P

L

Q

M MM

M

MM

M

LLL /[

T

[8

S
UI\/

\\
\[� (3.5)

Where ( )7
P
\\ ,...,1=\  is the vector of Lagrange multipliers, which are

all required to be non-negative, i.e. \ .0≥

( )
LM

P

L

LMM S\SS ∑
=

+=
1

0\ (3.6)

and

( )
LM

P

L

LMM T\TT ∑
=

+=
1

0\ (3.7)

For each given \ 0≥ , ( )\[� /  is a strict convex function in [ (over ; ).

Therefore, there is a unique ( )\[[ = , which minimizes ( )\[� /  over ;

(for the given \ 0≥ ). The minimizing ( )\[[ = can be solved analytically.

The dual objective function is defined as:

( ) ( ){ } ( )\[�\��;[\[�\  min // =∈=ϕ  (3.8)

The dual problem corresponding to ( )N3  is defined as:
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( )
�\

\

≤         subject to                

        maximize            : ϕ'

with ( )\ϕ  as above.

The dual problem is solved with some standard numerical method like a
conjugate gradient method or by a Newton method.

Because of the convexity of the constraint functions in ( )N3 , and the strict
convexity of the objective function the following important fact can be
proved:

,I� 
\ LV� DQ� RSWLPDO� VROXWLRQ� RI� WKH� GXDO� SUREOHP� '�� WKHQ� ( )
\[ � LV� WKH

XQLTXH�JOREDO�RSWLPDO�VROXWLRQ�RI� ( )N3 .

A more circumstantial description of the Method of Moving Asymptotes
can be found in e.g. [9]

3.3 Modifications of MMA
After having implemented The Method of Moving Asymptotes to the
FFA-dynamic stall model the conclusion that the MMA did not converge
for optimization problems without constraints could be drawn. Coming to
this conclusion, the problem was solved by the following modifications
made to MMA:

It can be shown that the problem

( )( )
     

   ...1                  when  min maxmin
2k

1i
exp,, QM[[[II

MMLVLPL
=≤≤−∑

=

[

where N is the number of data points and Q� is the number of design
variables, can equivalently, since it is a minimization problem, be written
as

( )∑
=

+
N

L

LL
]\

1

22min

provided that the following constraints are fulfilled:



FFA TN 1999-37

22

( )

( )( )

NL]

NL]II

NL\

NL\II

L

LLVLPL

L

LLVLPL

...1                                          0 

   ...1                 

...1                                          0 

...1                     

exp,,

exp,,

=≥

=≤−−

=≥

=≤−

[

[

Exampel:

Assume    ( ( ) exp,, LVLPL
II −[ )=3

Then from the four constraints above

3≥
L
\ , 0≥

L
\   ,    3−≥

L
] , and 0≥

L
]

⇒ 3≥
L
\  and 0≥

L
]

This implies  ( )∑
=

+
N

L

LL
]\

1

22min { } ==⇒≥= 00 min
LL
]]

= ( )∑
=

+
N

L

L
\

1

2 0min = ( )( )
2k

1i
exp,,min∑

=

−
LVLPL
II [

This gives a problem with constraints and the modified MMA can now
be implemented to the specific optimization problem with good
convergence as a result.

3.4 Structure of the optimization program
In this chapter a brief description of the construction of the optimization
program is presented.

The program is written in Visual Fortran 5.0 and a basic overview of the
program structure and the subroutines included in the program can be
seen below.



FFA TN 1999-37

23

7KH�RSWLPL]DWLRQ�SURJUDP�

352*5$0  FFA_Dynopt

6XEURXWLQH Readin (Reads the input values)

6XEURXWLQH Objektfunc (Calculates the differentials)

6XEURXWLQH Dyncl (Calculates simulated 
O

& ,
G

& , and 
P

& )

6XEURXWLQH Optimize (Calculates an optimal solution to the subproblem)

6XEURXWLQH Writeresult (Writes the result into files)

Central differences are used when the differentials, needed by the
optimization routine, are calculated.

A flowchart for the optimization program can be seen in Appendix 2.

3.5 How to use the optimization program
A list of the input files is written in a file called Dynstallinput. All the
input values needed by the optimization program are written in the input
file named after the contents of the input file. The input values to the
optimization program are among others convergence criteria, min-and
max values of the design variables, names of the wind tunnel experiment
data files, input values needed by the FFA dynamic stall model, static
airfoil data etc.

In the input file the user can choose to run the optimization program in
interactive mode, with the possibility to interrupt the optimization
whenever satisfied, or batch mode and use the convergence criteria to
interrupt the execution when the optimization is completed.
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4 Optimization

In this chapter some optimization examples are presented and the results
are analyzed.

Optimization has been made using wind tunnel experiments from three
sources:

1. Ohio State University (OSU) [6].

2. Glasgow University (GU) [7].

3. Risoe [8].

and also results from Navier-Stokes calculation carried out at Risoe.

4.1 Cases of optimization and type of
objective function

There are several ways of defining a relevant objective function.

A good agreement between experiments and simulations could be good
agreement in maximum lift.

Since the average lift curve slope is very important for aerodynamic
damping an objective function that considers the agreement in “ mean lift
curve slope “ would also be possible.

In the current study objective function 2, equation (3.2), which is based
on minimizing the deviation between experiments and simulations, was
chosen.

( ) ( )( )[ ] ( ) ( ) ( )( )[ ]∑∑
==

−+−=
N

L

LWLVLPW

N

L

LQLVLPQ
W&W&W&W&I

1

2
exp,,

1

2
exp,,2 -1   ηη

By using different values of η , different weighting of normal and

tangential force can be obtained.

In table 4.1 data for some cases used in the optimization is seen, for all
cases see Appendix 3.



FFA TN 1999-37

26

Table 1. Data for some cases for optimization.

Airfoil             Alfa Alfa Reduced Abbreviation
mean amplitude frequency

2KLR�6WDWH�8QLYHUVLW\��:LQG�WXQQHO�SLWFKLQJ�PRWLRQ��5HI�>���@����
NACA 4415 14.2 10.8 0.046 n_m
LS(1) 0421 MOD 13.2 10.5 0.045 l_m
SERI  809 12.9 10.6 0.041 s_m
*ODVJRZ�8QLYHUVLW\��:LQG�WXQQHO�SLWFKLQJ�PRWLRQ��5HI�>���@���������������
NACA 0015 11 7.6 0.102 N15_11_102
NACA 0021 11 7.8 0.097 N21_11_097
5LVRH��DLUIRLO��:LQG�WXQQHO�SLWFKLQJ�PRWLRQ��5HI�>���@��������������������������
Risoe-1 11.8 1.6 0.11 dclm02dcdm007
5LVRH��DLUIRLO��&)'�FDOFXODWLRQV�����������������������������������������������
Plunging 11.8 1.6 0.11 CFD Plunging
Pitching 11.8 1.6 0.11 CFD Pitching

4.2 Effect of small errors in wind tunnel
measurements

When the optimization program is run for measurements from Risoe with
mean angle of attack of 11.8 o the optimized semi-empirical parameters
become Tv=6.2 and Tf=0.8. Such a low value of Tf can not be seen in the
optimization for other airfoils and considering the physical interpretation
of the delay in the separation point, this Tf value is too low.

A second optimization was therefore made with the dynamic wind tunnel
data shifted in the Cl direction, this case is abbreviated dclm02dcdm007.
A shift of ∆ Cl = -0.02, which seemed quite reasonable, was applied to
the dynamic wind tunnel data before the optimization program was run.
The result was quite different from the foregoing with the following
optimized values: Tv=1.2 and Tf=4.2.

This shows that possible errors in the experiments have a large impact on
the optimized values of the semi-empirical parameters Tf and Tv.

In Fig. 4.2, &O�α � and &G�α � are plotted for original wind tunnel data as
well as for the case with a shift in the Cl direction. In the figure one can
see that the model is quite good at predicting the measured force
coefficients for the shifted case as well as for the non-shifted case, even
though the optimization result in different parameter values.
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Figure 4.1 Results from calculations on data from Risoe, Risoe-1.α -
mean=11.8o, α -amplitude=1.6o and k=0.11. Optimized semi-empirical
parameters with η =0.1 for original case: Tv=6.2, Tf=0.84 and acd=0.023.
Optimized semi-empirical parameters with η =0.1 for shifted case: Tv=1.2,
Tf=4.18 and acd=0.001.
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4.3 Optimization Results
Some of the different cases and the corresponding values for optimized
parameters are shown in the tables below. The results for all the cases
can be seen in Appendix 4.

Table 4.2. Optimized result for three design variables and η =0.1.

Case
Tv Tf acd

n_m 2.71 3.9 0.0094
l_m 0.89 6.95 0.0001
s_m 1.6 5.34 0.11

N15_11_102 6.26 7.39 0.165
N21_11_097 3.65 8.66 0.14
dclm02dcdm007 1.21 4.18 0.0001
CFD Plunging 0.0001 8.66 0.0001
CFD Pitching 1.37 1.44 0.1

Optimized

Table 4.3. Optimized result for three design variables and η =0.5.

Case
Tv Tf acd

n_m 2.7 3.93 0.019
l_m 3.91 3.46 0.15
s_m 0.0001 7.03 0.011

N15_11_102 3.13 10.43 0.11
N21_11_097 2.6 10 0.11
dclm02dcdm007 1.74 3.47 0.0001
CFD Plunging 0.0001 8.23 0.013
CFD Pitching 1.28 1.55 0.12

Optimized

From tables 4.2 and 4.3 above, optimization with three design variables,
tables 4.4 and 4.5 next page, optimization with four design variables, one
can see that the semi-empirical parameters varies quite much for the
different cases. This holds both for optimization with η =0.1 and
optimization with η =0.5 in the objective function (eq. 3.2). It is difficult

to see any pattern between optimized semi-empirical parameters for
optimization with η =0.1 as well as for η =0.5.
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Table 4.4 Optimized result for four design variables and η =0.1

Case
Tv Tf acd Tp

n_m 2.9 4.35 0.032 0.0001
l_m 1.04 7.51 0.01 0.0001
s_m 2.2 5.46 0.15 0.0048

N15_11_102 7.55 5.27 0.1 3.44
N21_11_097 0.0001 6.35 0.079 3.48
dclm02dcdm007 1.38 4.94 0.0001 0.0001
CFD Plunging 0.0001 9.53 0.001 0.0001
CFD Pitching 1.38 2.24 0.11 0.0001

Optimized

Table 4.5 Optimized result for four design variables and η =0.5

Case
Tv Tf acd Tp

n_m 2.69 4.03 0.018 0.68
l_m 3.74 4.34 0.15 0.0001
s_m 0.0001 7.58 0.005 0.0001

N15_11_102 0.0001 7.91 0.06 3.63
N21_11_097 0.0001 6.6 0.063 4
dclm02dcdm007 1.82 4.31 0.0001 0.0001
CFD Plunging 0.0001 9.04 0.016 0.0001
CFD Pitching 1.11 2.56 0.09 0.0001

Optimized

In the following figures the results from the calculations are plotted. In
each figure the load coefficients & , 

Q
& , &  and 

[
&  vs. angle of attack

α  are plotted. In figures 4.3-4.8 one can see comparisons between
simulations with a set of reference parameter values�and simulations with
optimized parameter values for some cases. Using the reference
parameters 7Y �, 7I � and DFG ���� in the model one can get a
reasonably good agreement, between measured and simulated data, for a
large number of cases, particularly OSU cases. In fig. 4.9-4.14
comparison between simulations with optimized parameter values
achieved using η =0.1 and η =0.5, in the objective function, are seen.
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Fig. 4.3 Results from calculations on data from OSU, NACA 4415, medium
frequency. η =0.1. Optimized semi-empirical parameters: Tv=2.71, Tf=3.9 and
acd=0.0094.
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Fig. 4.4 Results from calculations on data from OSU, LS (1) 0421 MOD, medium
frequency. η =0.1 Optimized semi-empirical parameters: Tv=0.89, Tf=6.95 and
acd=0.001.
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Fig.4.5 Results from calculations on data from OSU, SERI 809, medium frequency.
η =0.1 Optimized semi-empirical parameters: Tv=1.6, Tf=5.34 and acd=0.11.
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Fig.4.6 Results from calculations on data from GU, NACA 0015, reduced
frequency=0.102. η  =0.1 Optimized semi-empirical parameters: Tv=6.26, Tf=7.39
and acd=0.165.
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Fig. 4.7 Results from calculations on data from GU, NACA 0021, reduced
frequency=0.097. η =0.1. Optimized semi-empirical parameters: Tv=3.65, Tf=8.66
and acd=0.14.
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Fig.4.8 Results from calculations on data from Risoe, Risoe-1. η =0.1 Optimized
semi-empirical parameters: Tv=1.21, Tf=4.18 and acd=0.0001.
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Fig. 4.9 Results from calculations on data from OSU, NACA 4415, medium
frequency. Comparison of optimization with η =0.5 and η =0.1.
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Fig. 4.10 Results from calculations on data from OSU, LS (1) 0421 MOD, medium
frequency. Comparison of optimization with η =0.5 and η =0.1.
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Fig.4.11 Results from calculations on data from OSU, SERI 809, medium frequency.
Comparison of optimization with η =0.5 and η =0.1.
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Fig.4.12 Results from calculations on data from GU, NACA 0015, reduced
frequency=0.102. Comparison of optimization with η =0.5 and η =0.1.
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Fig. 4.13 Results from calculations on data from GU, NACA 0021, reduced
frequency=0.097. Comparison of optimization with η =0.5 and η =0.1.
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Fig.4.14 Results from calculations on data from Risoe, Risoe-1. Comparison of
optimization with η =0.5 and η =0.1.
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4.3.1 Results from CFD
Navier-Stokes calculations with the Risoe Ellipsys code with a k-ω  SST
turbulence model was done for the Risoe-1 airfoil. These calculations
were made at the same reduced frequency and α -amplitude as the wind
tunnel test with mean-α  of 11o. The calculations were done with the
airfoil in pitching motion with amplitude of 1.6 o and also with the airfoil
in plunging motion. For plunging motion the plunging amplitude was set
to h/c=0.127 ) sin( Wω  corresponding to the same α -amplitude as for the

pitching case.

Comparing the results for pitching and plunging motion it can be seen
that the mean lift curve slope is larger for the plunging case, which is
opposite to what is found from analysis of pitching and plunging motion
of wind turbine blade in the wind tunnel test analyzed in [7]

Comparing the wind tunnel pitching motion results and CFD pitching
calculations, it can be seen that the CFD results show a much smaller
mean lift curve slope and that the width of the loop is smaller. This is
also reflected in the resulting optimized value of 7I��which is smaller for
the CFD case.

As can be seen in figures 4.15-4.18 the dynamic stall model can mimic
the wind tunnel and CFD results quite well, as long as the used semi-
empirical parameters are optimized for the specific case. The variation in
optimized semi-empirical parameters, however, are different for the two
cases and it is difficult to select one set of values that would to be
representative for the airfoil without having an idea of which case to trust
the most.



FFA TN 1999-37

43

1.15

1.2

1.25

1.3

1.35

1.4

C
l

Simulated dynamic data, File:dyn_risplunge_ny01_3var
Simulated dynamic data: Tv=2 Tf=5 acd=0.08
Risoe CFD calculation data, File: plunge_ns_003.dat
Wind tunnel static data, File: riso1_ns1.cls

10 12 14

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Alpha (deg)

C
d

1.15

1.2

1.25

1.3

1.35

C
n

10 12 14

0.18

0.2

0.22

0.24

0.26

0.28

Alpha (deg)

C
x

Fig.4.15 Results from calculations on CFD data from Risoe, plunging motion. η =0.1
Optimized semi-empirical parameters: Tv=0.0001, Tf=8.66 and acd=0.0001.
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Fig.4.16 Results from calculations on CFD data from Risoe, pitching motion. η =0.1.
Optimized semi-empirical parameters: Tv=1.37, Tf=1.44 and acd=0.1.
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Fig.4.17 Results from calculations on CFD data from Risoe, plunging
motion. Comparison of optimization with η =0.5 and η =0.1.
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Fig.4.18 Results from calculations on CFD data from Risoe, pitching motion.
Comparison of optimization with η =0.5 and η =0.1.
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4.4 Shortcoming of the dynamic stall
model

The usefulness of the semi-empirical dynamic stall model is dependent
on that physical mechanisms of dynamic stall are correctly enough
described. For experiments with high mean-α  and high amplitudes,
especially cases from Glasgow University, one can in the measurements
see a marked vortex shedding process with multiple vortices. This is not
sufficiently modeled by the FFA-Beddoes dynamic stall model since the
currently used model, has no criterion for the start of ”vortex travelling”,
and vortex contribution is allowed as long as the angle of attack is
increasing, see Fig. 4.19–4.20 below.

0.5

1

1.5

2

C
l

Simulated dynamic data, File:dyn_n15_20_102_3var2
GU wind tunnel data, File: n5013061.dat
Wind tunnel static data, File: gu_n15_1.cls

10 20 30

0.2

0.4

0.6

0.8

1

Alpha (deg)

C
d

0.5

1

1.5

2
C

n

10 20 30
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Alpha (deg)

C
x

Fig.4.19. Results from calculations on data from GU, NACA 0015��α -
mean=19.8o, α -amplitude=7.4o and reduced frequency =0.102. η =0.1.
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Optimized semi-empirical parameters: Tv=4.91, Tf=8.82 and
acd=0.0001.

0.9

1

1.1

1.2

1.3

C
l

Simulated dynamic data, File:dyn_n21_20_024_3var2
GU wind tunnel data, File: n7012641.dat
Wind tunnel static data, File: gu_n21_1.cls

10 20 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Alpha (deg)

C
d

0.9

1

1.1

1.2

1.3

C
n

10 20 30
0.15

0.2

0.25

0.3

Alpha (deg)

C
x

Fig.4.20. Results from calculations on data from GU, NACA 0021��α -
mean=19.9o, α -amplitude=7.9o and reduced frequency =0.24. η =0.1.
Optimized semi-empirical parameters: Tv=1.36, Tf=8.91 and acd=0.027.
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4.5 The Root Mean Square function and
Comparison between different cases.

The optimization is made for different numbers of data points for
different cases. It is quite difficult to compare the value of the objective
function for different cases. In an attempt to simplify the problem and to
be able to compare the value of the objective functions, the RMS
function was introduced.

( ) ( )( )[ ] ( ) ( ) ( )( )[ ]
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W&W&
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ηη
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To get a survey of the objective functions the RMS function was plotted
against Tf and Tv. As one can see in Fig 4.1 below the RMS function is
very smooth and rather flat. At the minimum point about Tv=3.5 and
Tf=3.8 the RMS value is quite insensitive to changes in Tf and Tv.

These conclusions give us a hint about the actual optimization problem.
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Figure 4.2 Contour plot for the RMS function for NACA 4415 high
frequency.
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It is of great importance to see how parameters vary depending on what
cases that are chosen for the “tuning”. I.e. how much better will the
correlation between measurements and simulations be if parameters are
“tuned” for the specific case - one airfoil and one time series of airfoil
motion - in comparison to if parameters for an average airfoil and a
general case is used.

In figure 4.18, 4.20, 4.22, 4.24 and 4.26 the optimized values of 7I�and
7Y�are seen for the specific cases as well as some general cases. In figure
4.19 below the RMS values for NACA 4415 calculated with optimized 7I
and�7Y�values for the specific case on one hand and some general cases
on the other hand. One can use the optimized 7I�and� 7Y� values of the
general cases of all nine Ohio State University case without the RMS
value differing that much from the RMS value with 7I� and� 7Y� values
optimized for the specific case, see figures 4.19, 4.21 and 4.23.

Optimization are carried out with 7I�� 7Y and DFG as design variables,
Tp=0.8, lfmeth=4 and η =0.1
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Fig 4.18 Optimized 7I and 7Y for some cases.
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Fig 4.19 RMS values for NACA 4415 medium frequency. Calculations
based on 7I and 7Y values found from optimization for:

1. NACA 4415, medium frequency.

2. NACA 4415, all three frequencies.

3. All Nine OSU-cases

4. All cases from OSU and GU.
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Fig 4.20 Optimized 7I and 7Y�for some cases.
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Fig 4.21 RMS values for LS(1) 0421 MOD Medium frequency.
Calculations based on 7I and 7Y values found from optimization for:

1. LS(1) 0421 MOD, medium frequency.

2. LS(1) 0421 MOD, all three frequencies.

3. All Nine OSU-cases

4. All cases from OSU and GU.
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Fig 4.22 Optimized Tf and 7Y for some cases.

506�YDOXH�IRU�VBP�IRU�GLIIHUHQW�YDOXHV�RI�7Y�DQG�7I�

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

SERI 809, Medium
frequency

SERI 809, Three
frequencies

Nine cases of OSU All data from OSU
and GU

Fig 4.23 RMS values for SERI 809 medium frequency. Calculations
based on 7I and 7Y values found from optimization for:

1. SERI 809, medium frequency.

2. SERI 809 all three frequencies.

3. All Nine OSU-cases

4. All cases from OSU and GU.
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For the Glasgow University cases the use of semi-empirical parameters
optimized for the general cases, in the calculation of the RMS value for
the specific cases does not give much raise to the RMS value. This is
only true as long as the general cases have the same mean-α  as the
specific case, see figure 4.25 and 4.27.
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Fig 4.24 Optimized Tf and Tv.

506�YDOXH�IRU�1��B��B����IRU�GLIIHUHQW�YDOXHV�RI�7Y�DQG�7I�

0.00

0.02

0.04

0.06

NACA 0015, Mean
alfa=11, k=0.102

NACA 0015, Mean
alfa=11, four
frequencies

NACA 0015, Mean
alfa=11,four

frequencies and
NACA 0021, Mean

alfa=11,four
frequencies

NACA 0015, Mean
alfa=11,four

frequencies and ,
Mean alfa=20,three

frequencies

All data from OSU
and GU

Fig 4.25 RMS values for NACA 0015, Mean alfa=11, k=0.102 calculated
using 7I and 7Y values optimized for different cases.
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Fig 4.26 Optimized Tf and Tv.
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Fig 4.27 RMS values for NACA 0021, Mean alfa=11, k=0.097 calculated
using 7I and 7Y values optimized for different cases.

4.6 Tf as a function of the separation
point

Optimization was also made with a version of the dynamic stall model
where Tf is a function of the separation point I. Tf varies linearly
between breakpoints. Different values of Tf at the breakpoints are used
for increasing and decreasing angle of attack. In one version (Lfmeth=6 )
the different values are used depending on the sign of α∆ . In another
version (Lfmeth=5) different values are used depending on if I is larger
or smaller than IVWDWLF, with f>IVWDWLF more or less representing increasing
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angle of attack. Lfmeth=4 is the version used in optimizations shown
earlier with constant Tf.

Four values of Tf at f=0, f=0.33, f=0.66 and f=1 where used for both
increasing and decreasing angle of attack.

An improvement in the RMS function, deviation of observed data from
predictions based on the model, could be obtained for each case, see
figures 4.28 –4.30

0.00

0.02

0.04

0.06

0.08

0.10

0.12

n_l n_m n_h l_l l_m l_h s_l s_m s_h

2
E
MH
F
WL
Y
H
�I
X
Q
F
��
5
0
6
!  lfmeth=4

 lfmeth=5

 lfmeth=6

 ny=0.5,       lpotmeth=2, Tp=0.8, acd=0.13

Fig 4.28 RMS values for different cases, calculated with different
methods.
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Fig 4.29 RMS values for different cases, calculated with different
methods.
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 Fig 4.30 RMS values for different cases, calculated with different
methods.

However, since no “ pattern” in the Tf(f) variation could be seen no Tf(f)
variation that could be used to represent a good standard variation for a
“general airfoil” could be chosen, see figures 4.31-4.33.
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Fig 4.31 Optimized Tv and Tf(f) for NACA 4415 medium frequency.
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Fig 4.32 Optimized Tv and Tf(f) for LS(1) 0421 MOD medium frequency.
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Fig 4.33 Optimized Tv and Tf(f) for NACA 0015 mean alfa=11,
k=0.102.

In figure 4.34 it can bee seen that the agreement is good with lfmeth=5
except from a deviation for decreasing angle of attack below 18o. The
maximum lift coefficient is badly predicted with lfmeth=4 opposite to the
simulation with lfmeth=5.
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Fig 4.34 Comparison of wind tunnel test data and simulations with
lfmeth=4 and lfmeth=5. Optimized 7Y=0.1. Corresponding values for
7I�I� can be seen in figure 4.33.
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5  Conclusions

Numerical optimization was used to find appropriate semi-empirical
parameters in the Beddoes dynamic stall model. The optimization is
based on minimizing the deviation between results from wind tunnel tests
and CFD calculations and results from model simulation.

The optimization tool used is a modified MMA, Method of Moving
Asymptotes, package.

In general the comparisons between the aerodynamic force coefficients
predicted by the FFA-Beddoes method, using optimized semi-empirical
parameters, and measured values are very good. Even though the
dynamic stall model is not capable of representing measured dynamic
data for high mean-α , large amplitude, deep dynamic stall cases, where a
marked vortex shedding process with multiple vortices are present. These
are experiments with NACA 0015 and NACA 0021 at mean-α =20o from
the University of Glasgow.

The optimization resulted in a large span of the values for the optimized
semi-empirical parameters,  45.90001.0 ≤≤ 7Y and 56.1744.1   ≤≤ 7I .

The optimization for the large amplitude cases of the University of
Glasgow with mean-α =11o resulted in larger tuning parameter, 7Y and
7I, values than for the small amplitude oscillation cases of Risoe. Using
7Y �, 7I � and DFG ���� in the model one can get a reasonably good
agreement, between measured and simulated data, for a large number of
cases, particularly OSU cases.

By letting 7I�be a function of� I� an improvement in the RMS function,
deviation of observed data from predictions based on the model, could be
obtained for each case. However, no “pattern” in the 7I�I� variation could
be seen. Therefore no 7I�I�� variation that could be used for a “general
airfoil” could be chosen.

Possible errors in the experiments can have a large impact on the
optimized values of the semi-empirical parameters 7I and 7Y.

Since the set of optimized parameters differ for the plunging and pitching
case of CFD calculations, it would be valuable to investigate if this is a
general remark or not.
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Appendix 1     Manual for the optimization program
FFA-DYNCLOPT MANUAL

q Write the input values into the input files.
The input values must be in the following order:

• If interactive optimization is desired, then �, if not �.

• 0D[LPXP�QXPEHU�RI�LWHUDWLRQV�

• &RQYHUJHQFH�WROHUDQFH�

• Parameters specifying choice of method in the model.
OFQFO��OSRWPHWK��OIPHWK��OYRUPHWK��OFGG\Q��OGXW

• Choice of objective function and η .

Objective function =1:

( ) ( )( )[ ]   
1

2
exp,,∑

=

−=
N

L

LOLVLPO
W&W&I η

Objective function =2:

( ) ( )( )[ ] ( ) ( ) ( )( )[ ]∑∑
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LQLVLPQ
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exp,,
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2
exp,, -1  ηη

2EMHFWLYH�IXQFWLRQ��������������η

• Coefficients needed by the model.
������D������������D�������������E����������E�

• Parameters in the model.
7S���)XIDF���DFG
7YO���7YV            �(not used when lvormeth=2)

• 1XPEHU�RI�GHVLJQ�YDULDEOHV

• Choice of design variables

design_var_opt=1 ==> Tv Tf

design_var_opt=2 ==> Tv Tf acd

design_var_opt=3 ==> Tv Tf1i Tf2i Tf3i Tf4i Tf1d Tf2d Tf3d Tf4d

design_var_opt=4 ==> Tv Tf1i Tf2i Tf3i Tf4i Tf1d Tf2d Tf3d Tf4d
…..bp1i  bp2i  bp1d  bp2d
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design_var_opt=5 ==> Tv Tf1i Tf2i Tf3i Tf4i Tf1d Tf2d Tf3d Tf4d
…..acd

(Design_var_opt 3-5 is only valid if lfmeth= 5 or 6)
design_var_opt=6 ==> Tv Tf acd Tp

'HVLJQBYDUBRSW

• Initial guess for the design variables.
GHVLJQYDULDEOHB��GHVLJQYDULDEOHB�««GHVLJQYDULDEOHB1

• Minimum values for the design variables.
PLQB���PLQB�««PLQB1

• Maximum values for the design variables.
PD[B���PD[B�««PD[B1

• G[ in the calculations of the differentials.

• Coefficient used in the model.
FQ�SRV��������FQ�QHJ�����������(not used when lvormeth=2)

• 3LYRW�SRLQW�

• Parameters specifying choice of method in the model.
DOIDBLQSXWBPHWK�������GWDXBPD[

• 1XPEHU�RI�VWDWLF�GDWD�ILOHV

• Number of measured data files per static data file.
[��IRU�WKH�ILUVW�VWDWLF�GDWD�ILOH�
[���IRU�WKH�VHFRQG�VWDWLF�GDWD�ILOH�
�
�
[1��IRU�WKH�1WK�VWDWLF�GDWD�ILOH�

• 1DPH�DQG�ORFDWLRQ�IRU�WKH�ILUVW�VWDWLF�GDWD�ILOH�
1DPH�DQG�ORFDWLRQ�IRU�WKH�ILUVW�PHDVXUHG�GDWD�ILOH
3������3������FKRUG�OHQJWK�RI�WKH�DLUIRLO .
(P1-P2 are the measured data points the optimization is made for)
1DPH�DQG�ORFDWLRQ�IRU�WKH�VHFRQG�PHDVXUHG�GDWD�ILOH
3������3������FKRUG�OHQJWK�RI�WKH�DLUIRLO�
�
�
1DPH�DQG�ORFDWLRQ�IRU�WKH�1WK�PHDVXUHG�GDWD�ILOH
3������3������FKRUG�OHQJWK�RI�WKH�DLUIRLO�
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• 6DPH�DV�DERYH�IRU�WKH�UHVW�RI�WKH�VWDWLF�GDWD�ILOHV�

• Comments
&RPPHQWOLQH�
&RPPHQWOLQH�
&RPPHQWOLQH�

• Names and locations of the output files (without three letter
extension).
)LOH��  !
File1.utd� contains some input values and the optimization result.
File1.txt, contains the comment lines.
File1.log, log file over design variables and corresponding RMS value
for each iteration.

'DWD5HVXOWILOH�  !�DataResultfile1.utd, containing resulting
dynamic load coefficient, among other things, simulated, using
optimized parameters, for the first case.
'DWD5HVXOWILOH�  !�DataResultfile2.utd, containing resulting
dynamic load coefficient, among other things, simulated, using
optimized parameters, for the second case.
�
�
'DWD5HVXOWILOH1  !�DataResultfileN.utd, containing resulting
dynamic load coefficient, among other things, simulated, using
optimized parameters, for the Nth case.

q Write the names and locations of the input files into the input specification file

q Run the optimization program.

 An example of the input file:
#       Selection of interactive optimization

# interactive optimization = yes  ==> interactive=1

# interactive optimization = no ==> interactive=0

# interactive

        0

#--------------------------------------------------------

#       Convergence criteria – If batch mode is chosen

# Maximum number of iterations

   30

# Convergence tolerance
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  1.d-5

#--------------------------------------------------------

# lcncl   lpotmeth  lfmeth  lvormeth  lcddyn  ldut

   2        2       4         2         1       0

#--------------------------------------------------------

# Objective function            η
      2                        0.5

#--------------------------------------------------------

# a1,     a2,     b1,        b2

  0.3     0.7     0.14      0.53

#--------------------------------------------------------

# First row: tp        fufac         acd

             0.8        0.5         0.13

#--------------------------------------------------------

# vortex parameters (1 row)

#   tvl           tvs

     8             0

#--------------------------------------------------------

#  number of design variables

     3

#--------------------------------------------------------

# Choose design variables

#design_var_opt=1 ==> tv tf

#design_var_opt=2 ==> tv tf acd

#design_var_opt=3 ==> tv tf1i tf2i tf3i tf4i tf1d tf2d tf3d tf4d

#design_var_opt=5 ==> tv tf1i tf2i tf3i tf4i tf1d tf2d tf3d tf4d acd

#design_var_opt=6 ==> tv tf acd tp

        2

#--------------------------------------------------------

#   tvinitial  tfinitial  acdinitial

      8d0         8d0       0.13d0

#--------------------------------------------------------

#   tvmin     tfmin         acdmin

    1d-4       1d-4          1d-4

#--------------------------------------------------------

#   tvmax         tfmax         acdmax

    30d0          30d0           2d0

#--------------------------------------------------------

#  dx_val

    0.0001

#--------------------------------------------------------

# cn1pos       cn1neg

    1.7         -2
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#--------------------------------------------------------

# pivot

   0.25

#--------------------------------------------------------

# alfa_input_meth   dtau_max

       2              0.2

#--------------------------------------------------------

# number of .cls files

2

#--------------------------------------------------------

#number of .dat files per .cls file

1

2

#--------------------------------------------------------

# File name with "sep-data"  .cls files

#--------------------------------------------------------

#     p1  till     p2     chord  (c_in)

#--------------------------------------------------------

#File name with experimental data   .dat files

#--------------------------------------------------------

s:\mtm\prof_data\gu_prof\gu_n15_1.cls

#--------------------------------------------------------

 s:\mtm\prof_data\gu_prof\n5012641.dat

       129     256                .55

#--------------------------------------------------------

s:\mtm\prof_data\gu_prof\gu_n21_1.cls

#--------------------------------------------------------

s:\mtm\prof_data\gu_prof\n7012641.dat

       129     256                .55

s:\mtm\prof_data\gu_prof\n7012781.dat

       129     256                .55

#--------------------------------------------------------

# Comment lines (3 rows)

Comment1

Comment2

Comment3

#--------------------------------------------------------

# Location and name of outputfiles without three letter extension

s:\mtm\dyncl_in_ut\dyncl_utdatafiler\output_file

s:\mtm\dyncl_in_ut\dyncl_utdatafiler\dyn_datafile1

s:\mtm\dyncl_in_ut\dyncl_utdatafiler\dyn_datafile2

s:\mtm\dyncl_in_ut\dyncl_utdatafiler\dyn_datafile3
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An example of the Result file:

***FFA-Beddoes Dynamic Stall Model INPUT VARIABLES AND THE RESULTS***

===============================================================

 Indatafile used :

 ============

 s:\mtm\dyncl_in_ut\dyncl_indatafiler\in3var_12_ny05

   lcncl lpotmeth lfmeth lvormeth lcddyn ldut

       2       2             4           2          1        0

 Objective function=  2

 Pivot= 0.25

 Ny= 0.50

Dat file used :

 ==========

s:\mtm\prof_data\gu_prof\n5012641.dat

s:\mtm\prof_data\gu_prof\n7012641.dat

s:\mtm\prof_data\gu_prof\n7012781.dat

 Number of iterations:            10

Optimized values of design parameters:

             j                              xval(j)

       =======                  =======

            1                             0.0001

            2                             7.9121

            3                             0.0589

 RMS value = 0.0561
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Calculate
Xoptimal

Read input file

. true .

. false . . false .
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. false .
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. false .
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Appendix 2  Flow chart for the optimization program
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Appendix 3   Data for optimization cases

          Cases for Optimization      
Airfoil

Mean 
alfa

Alfa 
amplitide

Reduced 
Frequency Abbreviation

2KLR�6WDWH�8QLYHUVLW\�ZLQG�WXQQHO�WHVW�����������������������������������������
NACA 4415 14.2 10.8 0.023 n_l

14.2 10.8 0.046 n_m
14.2 10.8 0.069 n_h
13.2 10.5 0.022 l_l
13.2 10.5 0.045 l_m
13.2 10.5 0.066 l_h
12.9 10.6 0.02 s_l
12.9 10.6 0.041 s_m
12.9 10.6 0.061 s_h

*ODVJRZ�8QLYHUVLW\�ZLQG�WXQQHO�WHVW����������������������������������������������
NACA 0015 11.3 8.0 0.026 N15_11_026

11.3 7.9 0.051 N15_11_051
11.4 7.6 0.102 N15_11_102
11.1 7.0 0.155 N15_11_155
19.8 7.6 0.025 N15_20_025
19.8 7.4 0.102 N15_20_102
19.6 6.8 0.154 N15_20_154

NACA 0021 10.9 7.9 0.024 N21_11_024
10.9 7.8 0.049 N21_11_049
10.0 7.8 0.097 N21_11_097
11.0 7.7 0.142 N21_11_142
19.9 7.9 0.024 N21_20_024
19.9 7.9 0.049 N21_20_049
19.8 7.9 0.097 N21_20_097
19.9 7.8 0.142 N21_20_142

5LVRH�ZLQG�WXQQHO�GDWD�������������������������������������������������������������������������

Risoe-1 11.8 1.6 0.11 dclm02dcdm007
Risoe   CFD  (Ellipsys unsteady calc with k-w SST )                               

Risoe-1 11.8 1.6 0.11 CFD Plunging
11.8 1.6 0.11 CFD Pitching
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Appendix 4 Classification of Cases and
Optimization Results

OSU NACA 4415, three frequencies                       Í   Group(1)

OSU LS(1) 0421 MOD, three frequencies              Í    Group(2)

OSU SERI 809, three frequencies                           Í    Group(3)

GU NACA 0015, mean-α =11o, four frequencies  Í    Group(4)

GU NACA 0021, mean-α =11o, four frequencies  Í    Group(5)

GU NACA 0015, mean-α =20o, three frequencies Í    Group(6)

GU NACA 0021, mean-α =20o, four frequencies  Í    Group(7)
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Table A4.1 Optimization result for Tp=0.8 and η =0.1.

Case Tv Tf acd RMS

n_l 3.11 3.52 0.0001 0.0268
n_m 2.71 3.9 0.0094 0.0319
n_h 3.56 3.57 0.035 0.0535

l_l 0.0023 6.12 0.0001 0.031
l_m 0.89 6.95 0.0001 0.037
l_h 0.77 6.45 0.017 0.03

s_l 0.0001 10.92 0.076 0.0483
s_m 1.6 5.34 0.11 0.0463
s_h 3.33 4.03 0.16 0.063

N15_11_026 2.13 12.26 0.056 0.025
N15_11_051 6.35 8.21 0.139 0.029
N15_11_102 6.26 7.39 0.165 0.043
N15_11_155 6.65 14.56 0.156 0.023
N15_20_025 2.42 9.59 0.27 0.048
N15_20_102 9.15 3.55 0.43 0.12
N15_20_154 9.29 4.1 0.2 0.17

N21_11_024 1 13.57 0.0001 0.0098
N21_11_049 2.23 10.9 0.032 0.016
N21_11_097 3.65 8.66 0.14 0.02
N21_11_142 7.05 9.98 0.17 0.027
N21_20_024 0.92 9.42 0.0001 0.032
N21_20_049 1.56 5.8 0.075 0.032
N21_20_097 3.4 6.37 0.09 0.055
N21_20_142 5.61 5.48 0.095 0.097

Group (1) 3.22 3.69 0.023 0.04
Group (2) 0.72 6.56 0.0083 0.033
Group (3) 2.09 4.93 0.11 0.057
Group (4) 5.71 9.07 0.14 0.036
Group (5) 5.04 9.2 0.14 0.022
Group (6) 9.24 3.56 0.41 0.13
Group (7) 3.85 5.93 0.088 0.062
Group (1+2+3) 1.94 5 0.037 0.046
Group (1+2+3+4+5+6+7) 5.85 6.36 0.13 0.074
Group (4+5) 5.42 9.13 0.14 0.03
Group (4+6) 8.51 5.23 0.17 0.094
Group (5+7) 3.79 6.75 0.097 0.05
Group (6+7) 7.19 4.54 0.18 0.098

dclm02dcdm007 1.21 4.18 0.0001 0.0064
Risplunge 0.0001 8.66 0.0001 0.0037
Rispitch 1.37 1.44 0.1 0.0032

Optimization result
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Table A4.2 Optimization result for Tp=0.8 and η =0.5.

Case Tv Tf acd RMS

n_l 3.14 3.52 0.014 0.039
n_m 2.7 3.93 0.019 0.046
n_h 4.62 2.64 0.15 0.079

l_l 0.45 5.4 0.0001 0.04
l_m 3.91 3.46 0.15 0.044
l_h 2.02 4.96 0.071 0.039

s_l 0.0001 9.28 0.17 0.082
s_m 0.0001 7.03 0.011 0.08
s_h 0.137 6.43 0.0001 0.1

N15_11_026 3.28 11.1 0.088 0.034
N15_11_051 2.93 11.22 0.07 0.044
N15_11_102 3.13 10.43 0.11 0.067
N15_11_155 4.94 17.56 0.15 0.039
N15_20_025 0.0001 12.27 0.12 0.06
N15_20_102 4.91 8.82 0.0001 0.18
N15_20_154 8.82 10.7 0.0001 0.21

N21_11_024 0.081 14.72 0.0001 0.015
N21_11_049 0.4 13.11 0.008 0.021
N21_11_097 2.6 10 0.11 0.043
N21_11_142 6.36 11.29 0.13 0.056
N21_20_024 1.36 8.91 0.027 0.036
N21_20_049 1.23 6.18 0.044 0.047
N21_20_097 2.63 7.4 0.035 0.067
N21_20_142 3.38 9.64 0.0001 0.1154

Group  (1) 3.73 3.23 0.085 0.058
Group  (2) 2.35 4.66 0.081 0.042
Group  (3) 0.0001 6.78 0.0001 0.089
Group  (4) 2.47 11.97 0.099 0.052
Group  (5) 3.6 10.95 0.1 0.041
Group  (6) 6.3 9.1 0.0001 0.17
Group  (7) 2.39 7.74 0.0093 0.079
Group  (1+2+3) 1.66 5.28 0.034 0.068
Group  (1+2+3+4+5+6+7) 2.02 9.81 0.0001 0.11
Group  (4+5) 3.16 11.48 0.1 0.047
Group  (4+6) 5.9 9.65 0.027 0.12
Group  (5+7) 2.31 8.71 0.033 0.067
Group  (6+7) 4.15 8.68 0.0001 0.13

dclm02dcdm007 1.74 3.47 0.0001 0.0108
Risplunge 0.0001 8.23 0.013 0.0072
Rispitch 1.28 1.55 0.12 0.0057

Optimization Result



FFA TN 1999-37

80

Table A4.3 Optimization result for η =0.1.

Tv Tf acd Tp RMS

n_l 3.18 4.15 0.006 0.0001 0.027
n_m 2.9 4.35 0.032 0.0001 0.032
n_h 3.78 4 0.064 0.0001 0.0526

l_l 0.0001 6.89 0.0001 0.0001 0.031
l_m 1.04 7.51 0.01 0.0001 0.0356
l_h 1.08 6.85 0.037 0.0001 0.0287

s_l 0.0001 11.34 0.086 0.0001 0.0477
s_m 2.2 5.46 0.15 0.0048 0.046
s_h 3.21 4.3 0.15 0.52 0.0632

N15_11_026 2.43 12.77 0.068 0.0001 0.0248
N15_11_051 6.01 7.44 0.11 1.99 0.0284
N15_11_102 7.55 5.27 0.1 3.44 0.0407
N15_11_155 6.71 14.33 0.15 0.88 0.0226
N15_20_025 0.59 8.85 0.15 4 0.0439
N15_20_102 8.48 2.55 0.15 4 0.1074
N15_20_154 9.26 2.57 0.12 4 0.1415

N21_11_024 1.04 13.76 0.0001 0.558 0.0098
N21_11_049 3.29 10.94 0.055 0.0001 0.0153
N21_11_097 0.0001 6.35 0.079 3.48 0.018
N21_11_142 8.23 7.04 0.11 3.18 0.0244
N21_20_024 0.96 10.04 0.005 0.0001 0.0317
N21_20_049 1.03 3.88 0.017 3.97 0.0304
N21_20_097 2.74 5.13 0.0454 2.72 0.0528
N21_20_142 5.57 5.39 0.09 0.91 0.0965

Group  (1) 3.41 4.14 0.047 0.0001 0.0387
Group  (2) 0.98 7.03 0.025 0.0001 0.0319
Group  (3) 2.34 5.06 0.13 0.37 0.0568
Group  (4) 5.07 7.44 0.093 2.84 0.035
Group  (5) 4.55 7.83 0.1 2.35 0.021
Group  (6) 8.8 2.58 0.14 4 0.1099
Group  (7) 3.45 5.28 0.06 1.79 0.0611
Group  (1+2+3) 2.29 5.33 0.06 0.0001 0.0454
Group  (1+2+3+4+5+6+7) 5.18 4.45 0.07 4 0.0713
Group  (4+5) 4.88 7.61 0.097 2.64 0.029
Group  (4+6) 8.6 3.2 0.11 4 0.0833
Group  (5+7) 2.99 5.72 0.059 2.36 0.0488
Group  (6+7) 7.078 2.71 0.11 4 0.0889

dclm02dcdm007 1.38 4.94 0.0001 0.0001 0.0054
Risplunge 0.0001 9.53 0.001 0.0001 0.0031
Rispitch 1.38 2.24 0.11 0.0001 0.0029

Optimization Result
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Table A4.4 Optimization result for η =0.5.

Tv Tf acd Tp RMS

n_l 3.04 4.35 0.012 0.0001 0.0386
n_m 2.69 4.03 0.018 0.68 0.0462
n_h 4.46 3.42 0.15 0.0001 0.078

l_l 0.41 3.25 0.0001 3.25 0.0387
l_m 3.74 4.34 0.15 0.0001 0.0434
l_h 2.08 5.3 0.078 0.36 0.0387

s_l 0.0001 10.04 0.15 0.008 0.0806
s_m 0.0001 7.58 0.005 0.0001 0.0773
s_h 0.425 6.8 0.0001 0.0008 0.0987

N15_11_026 3.37 10.55 0.055 1.3 0.0334
N15_11_051 3.46 11.46 0.08 0.16 0.0432
N15_11_102 0.0001 7.91 0.06 3.64 0.0561
N15_11_155 0.0001 12.0951 0.1147 3.4654 0.0327
N15_20_025 0.0001 9.9 0.12 4 0.0514
N15_20_102 4.59 7.34 0.0001 2.49 0.1754
N15_20_154 9.45 7.14 0.0001 4 0.1977

N21_11_024 0.28 15.26 0.0001 0.09 0.0151
N21_11_049 1 13.49 0.017 0.0001 0.0193
N21_11_097 0.0001 6.6 0.063 4 0.0292
N21_11_142 5.84 7.32 0.084 4 0.039
N21_20_024 1.39 9.56 0.03 0.0001 0.0361
N21_20_049 0.95 3.97 0.028 4 0.042
N21_20_097 1.63 5.94 0.002 3.26 0.0613
N21_20_142 3.08 9.5 0.0001 1.11 0.1153

Group  (1) 3.46 4.11 0.069 0.0001 0.0572
Group  (2) 2.37 5.31 0.09 0.064 0.0417
Group  (3) 0.146 7.25 0.0001 0.0001 0.0877
Group  (4) 0.0001 10.22 0.065 3.06 0.048
Group  (5) 1.35 8.35 0.064 3.59 0.0352
Group  (6) 6.64 6.3 0.019 3.47 0.1647
Group  (7) 1.43 6.76 0.0001 2.69 0.0766
Group  (1+2+3) 1.78 5.84 0.038 0.0001 0.067
Group  (1+2+3+4+5+6+7) 0.56 8.77 0.0001 3.04 0.108
Group  (4+5) 0.1 9.62 0.06 3.3 0.0424
Group  (4+6) 5.72 7.38 0.03 3.27 0.1167
Group  (5+7) 0.97 6.78 0.0001 3.65 0.0618
Group  (6+7) 3.19 7.66 0.0001 2.6 0.1313

dclm02dcdm007 1.82 4.31 0.0001 0.0001 0.0088
Risplunge 0.0001 9.04 0.016 0.0001 0.006
Rispitch 1.11 2.56 0.09 0.0001 0.0047

Optimization Result
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